超短脉冲和腔内色散

王之江 杨本祺

(中国科学院上海光学精密机械研究所)

提 要

为要获得锁模激光器的超短脉冲,就要在一定波段内,完全校正腔内色散。适当的反射膜与折射介质 相匹配,以校正腔内色散,对于获得超短脉冲是必要的。

锁模激光的脉冲宽度随技术进步而日益变小,用对撞脉冲锁模已得到50~60 fs 的宽度,而且还可通过光纤将频谱展宽而进一步压缩脉冲宽度,得到20 fs 左右的结果¹¹,但是对于种种实验结果之间的差别,还未能在理论上作出准确的定量解释,看来因素是多方面的¹²¹,其中之一是光程色散,对撞锁模的腔内元件已经非常少,除很薄的激光染料和饱和吸收染料外,就是介质反射膜。为补偿折射介质的正色散,最近 Fork 等提出在腔内引入负色散¹³¹,但未有效果。Dietel等¹⁴¹在腔内加入一定厚度的玻璃以变更脉冲宽度,并可选择厚度使脉冲宽度为极小值,但是并未获得很窄的脉冲。这种做法未能压缩脉冲宽度的原因可能有两个,其一是,仅在一个波长校正群速度色散也许是不够的;其二是介质膜的色散不一定是正值。另外,这些实验也表明,至今还没有适当的测量方法能判定色散大小。

文献[3]导出,如光脉冲经过光程 P 所需的时间为 T,则 T 的色散为

$$-\frac{dT}{d\lambda} = \frac{\lambda}{c} \frac{d^2 P}{d\lambda^2} \,. \tag{1}$$

亦即 P(λ)中的线性部分对锁模同步没有影响。故当被锁定的频谱很窄时,只要中心波长的 光程对波长的二次导数为零即可,但当频谱较宽时,显然要求各波长的(d²P/dλ²)均为零。在 这种情况下,用不同的介质产生负色散也会有不同的效果。这是由于介质具有各不相同的 色散函数形式,折射率色散可以表示为 Hartmann 公式

$$n(\lambda) = n_0 + [K/(\lambda - \lambda_0)], \qquad (2)$$

式中 n_0 、 λ_0 、K是三个随介质而变的常数。厚度l的介质光程P=nl,故

$$\frac{d^2 P}{d\lambda^2} = \frac{2Kl}{(\lambda - \lambda_0)^3} \,\,. \tag{3}$$

收稿日期: 1984年8月7日; 收到修改稿日期: 1984年10月5日

仅当材料的 λ₀ 相近时,才可能较好地正负相补偿,例如石英($\lambda_0 \sim 128 \text{ nm}$)补偿酒精($\lambda_0 \sim 360 \text{ nm}$)时效果不会很好。另外文献[3]采用的棱镜系统的负色散是 $dn/d\lambda$ 和 $d^2n/d\lambda^2$ 的函数,由于两者函数形式不同,也使匹配补偿难以做好。

Ξ

多层膜是引起光程色散的原因,这是由于反射时的位相延迟所致,常用的光学薄膜计算 方法就可以算出色散^[5]。我们计算了四种膜系的位相延迟色散(见附表 1~4);两种膜系是 最简单的 λ/4 膜系但层数不同,将两个 λ/4 膜系相叠成的宽带反射膜,最后一种是膜厚渐变 的宽带反射膜,计算结果表明,在高反射率区间的位相延迟一般都随波长的增长而单调下 降,光程的一次导数恒为正,二次导数则可以变号,而且可以是较大的值(折射介质厚度为 10 μm 时 d³P/dλ² 约为10⁻⁸ nm/nm²)。尤其是两种层数较多的宽带膜,可以产生较大的正 值或负值。因此介质膜的位相色散也许是影响脉冲宽度的更主要的因素,并可随膜系设计 (包括反射带中心波长选择)而变化。这里只算了垂直入射情况,大角度入射时会有较大变 化。

似乎还没有为形成预定的位相性质而作的膜系设计。看来设计和制造适当的反射膜并 与折射介质相匹配,对于校正腔内色散,可靠地可重复地获得一定的超短脉冲,是必要的。

对于多层膜的位相色散,最近也有人做了计算⁶⁰³,我们的不同在于:计算时已计及膜材料的色散,计算了光程色散并讨论了其导数性质,计算了不同的膜系等等,最主要的是结论近乎相反。 文献[6]认为膜系色散不是重要因素。 其结论的依据是腔内插入玻璃厚度的实验,但实验完全未计及光程的二次导数性质,也未考虑补偿的完善性,因此结论看来还缺乏依据。

四

要使锁模产生窄脉冲,似应要求:被锁定的各纵模频率差为常数,就如同光栅理论要求 光栅刻痕间距为常数一样,否则,从一般所知级数和并不能给出窄的时空分布。即当 a 为常 数时,函数 f(n, x)有

$$f(n, \boldsymbol{x}) = |\sum^{n} \exp(ian\boldsymbol{x})|^{2} = \left(\frac{\sin(na\boldsymbol{x}/2)}{\sin(a\boldsymbol{x}/2)}\right)^{2} \boldsymbol{o}$$
(4)

对光栅而言, $a = (2\pi d/\lambda)$, d 是光栅间距, $x = \sin \theta$, θ 是衍射角, 对锁模而言, $a = \Delta \omega$ 为相邻 纵模频差,x = t 是时间。仅当腔长 l 没有色散, 纵模频率差 $\Delta \omega = (2\pi c/l)$ 才是常数, 上式才成立, 锁模才能获得窄脉冲。

锁模脉冲之间距是 r=(l/c),当 l 不是常数时,脉冲将因色散而展宽,脉冲宽度将是逐步加宽。由此可见,当腔内色散未校正时,锁模脉冲宽度主要由饱和吸收染料截去脉冲前沿的能力和"快"的波长的能力而定。这样一来脉冲的波长成分会随时间变化。实验测量光谱成分随时间的发展应是可能的。若能测出这种发展变化,那么腔内色散的正负也就决定。这也许是一种测量腔内光程色散的可能做法。由于染料萤光光谱本身也可能是时间的函数,这类因素应在测量中计及。

Table 1 High-relievable mill with 10 layers of 1102/0102, All (Dir) Q						
波长,λ (nm)	反射率, R	位相延迟角,θ	光程延迟,-P (nm)	$\frac{dP}{d\lambda}$ (nm/nm)	$-\frac{d^2P}{d\lambda^2}$ (nm/nm ²)	
420 430 440 450 460 470 480 470 480 470 500 510 520 530 540 550 540	.961305 .986487 .987579 .994561 .996638 .996638 .998286 .998277 .998388 .998301 .998301 .998773 .998773 .998773 .9971538 .9971538	342.993 327.677 313.34 299.968 287.274 275.012 263.1 251.355 239.744 226.656 212.294 193.935 166.099 115.394	400.159 391.392 382.971 374.96 367.072 359.043 350.8 342.122 332.978 321.096 306.647 285.515 249.149 176.296	(nm/nm) -4.22662 -,860424 -,819745 -,790349 -,793012 -,811171 -,843769 -,87192 -1.0338 -1.28367 -1.67346 -2.62656 -5.10667 -10.4369	(nm/nm ²) .33631 3.4551.6E-03 4.38881E-03 1.21593E-03 -1.5707E-03 -2.02465E-03 -2.79903E-03 -2.79903E-03 0221024 0631242 141773 36484 639353	
560 580 590 610 620 630 630 640 650 660 650 660 650 680	.985437 .992872 .997167 .998098 .998318 .997664 .995011 .9950567 .994275 .994475 .994475 .994262 .991073 .979725	29.3758 ~56.638 ~104.901 ~136.151 ~161.248 ~191.693 ~242.385 ~335.943 ~429.073 ~478.154 ~510.771 ~541.799 ~585.158	45.6957 -B9.6768 -169.007 -223.134 -268.747 -324.813 +417.441 +587.9 -762.796 +B63.334 -936.414 -1008.35 +1105.3	-14.2469 -10.9849 -6.27695 -4.68983 -4.70817 -6.87325 -13.4221 -18.536 -14.0375 -8.07074 -6.81344 -7.75615 -13.6912	0542489 .636801 .240212 .0871 0986209 352974 873873 0488672 .849337 .257414 .0113258 224953 90772	

表1 13层 TiO₂/SiO₂ 高反膜, AH(LH)⁶G

Table 1 High-reflection film with 13 layers of TiO₂/SiO₂, AH(LH)⁶G

表 2 21 层 TiO₂/SiO₂ 高反膜, AH(LH)¹⁰G

Table 2 High-reflection film with 21 layers of $\rm TiO_2/SiO_2, ~AH(LH)^{10}G$

波长 , λ (nm)	反射率, R	位相延迟角,θ	光程延迟,-P (nm)	$\frac{dP}{d\lambda}$ (nm/nm)	$\frac{d^2P}{d\lambda^2}$ (nm/nm ²)
420	.572231	206.859	241.336	665509	1.26784
430	.897756	240.309	287.036	1.78108	₩.894657
440	.994761	215.988	263.985	-2.07437	.248477
450	• 998958	206.047	257.559	35058	.023580 1
460	.999633	199.13	254.444	216227	•0136375
470	.999804	193.614	252.774	- 129656	4.99105E-03
480	.999867	188.74	251.653	0950312	2.51961E-03
490	. 9 998 9	184.256	250.793	079946	6.27041E-04
500	• 999898	180	250	0804573	-6.7234E-04
510	• 99988	175.864	249.141	0928107	-1.8487E-03
520	• 999848	171.755	248.091	119777	-3.7303E-03
-530	.999773	167.539	246.655	175034	-7.39288E-03
540	. 999593	162.99	244,485	266557	0105033
550	.99915	157.942	:241.3	340431	-6.32477E-03
560	.998142	152.513	237.242	544837	0365748
570	*993979	144.989	229.566	- 849297	0414596
580	.973792	134.063	215.99	-4-29305	478488
590	.731009	105.681	173.199	5.53263	2.17032
600	113775	180.886	301.477	5.07843	-2.26146
610	• 565488	1.47.27	249.541	-5.68071	*382 77 *
620	-559803	126.18	217.31	-3.41637	0755329
630	. 336324	103.757	181.575	-3.95735	113278
640	.0332418	94.338 3	167.713	9-03738	2.16453
650	.105416	181.464	327.643	8.13357	-2.31695
660	.270973	164.385	301.373	-4.20494	-150717
.670	. 363567	147.668	274.827	-2.58562	•0172958
680	.334309	132.232	249.772	-2.5306	-2.36893E-03

5 卷

Table 3 High-reflection film with 31 layers of TiO_2/SiO_2 , A0.95[H(LH)⁷]L1.24[H(LH)⁷]G

10.000				· · · · · · · · · · · · · · · · · · ·	
波长,λ (nm)	反射率, R	位相延迟角,θ	光程延迟,-P (nm)	$-\frac{dP}{d\lambda}$	$-\frac{d^2P}{d\lambda^2}$
420	070704	212 043	1A7 70A		0744745
470	000000	2017 71E	547 CAG	- 701400	ava40303
440	007007	102 010	DAA CEE		•V&V+1&7
450	0077612	1204010	44V+202	- VOLVOZY	*VI(/144/
430	0000177	407 724	207 a 221	07540.50	0-////01:-03
400	000070	100 133	230,477	•• "U/ U1044	1.0350/E-03
47.4	• 777 <i>44</i> 7	102.1//	23/ .842	-,0854/09	-5.49/936-04
400	· 77358	1// .35/	23/ 145	~,0/34856	-1.02854E-03
490	• 778438	1/3=031	236.331	0911963	-2.76136E-03
500	e999331	167-364	235.228	- 14071	-6.93703E-03
510	•999129	164.8	233.467	-,203267	-5.57184E-03
520	·995418	160.001	231-113	- "267805	-8.63171E-03
530	998786	154.733	227.801	429296	0245433
540	•999582	148.028	222.042	732613	0373535
550	.999631	139.037	212.418	-1,00861	0437551
560	.999474	125.972	195.956	-1.54962	241253
\$70	.997509	88.5162	140-151	-19.9863	-3.07156
580	-990729	-1.05.604	-170.14	-25.8777	2.02218
590	978033	-194.03	-317.994	-8.36164	1.05149
600	.998745	-218,323	363.872	-3.41432	0296631
610	•99852	-239.788	-406.307	-4.63033	165673
620	. 997099	-271.122	-466.932	-8.43751	602404
630	.99208	-335.337	-586.84	-17.5606	-1.05073
640	.989127	-447.541	-795.628	-18.3221.	-909237
650	. 993303	-514-304	-928.605	-9.85425	GOACTA
650	. 994461	+546.766	-1002-4	-6.0138	155777
670	-993543	-568.766	-1058.54	-5.32598	7.541446-07
680	-989751	-587.463	-1113.43	-5.68965	.0845661

表 4 34 层 TiO₂/SiO₂ 高反射膜, A0.8(LH)0.83(LH)0.86(LH)…1.454(LH)G

Table 4 High-reflection film with 34 layers of TiO_2/SiO_2, A0.8(LH)0.83(LH)0.86(LH)\cdots1.454(LH)G

波长,λ	-			dP	d^2P
(mm)	反 射率, K	位相延迟角, θ	光程延迟,一日	$d\lambda$	$-\frac{d\lambda^2}{d\lambda^2}$
(mm)	see also a f			(nm/nm)	(nm/nm²)
420	+433467	263.917	307.903	4,22971	-1.70228
430	. 878676	227.163	273.722	-3.46036	.371,996
440	.968933	214.558	262,238	664291	.0525756
450	•985824	205.64	257.05	- "357873	.0214319
460	991747	198.969	254.238	203221	.0121412
470	•994063	193.536	252.672	-,123543	4-52662E-03
480	•995152	188.7	251.6	0914977	2.35796E-03
490	9975612	184,239	250,77	0774518	5.57899E-04
600	• 995796	180	250	0781422	-6.45161E-04
510	•995368	175.882	249.166	090109	-1.79195E-03
520	-994698	171,795	248.148		-3.49236E-03
530	993389	167.617	246.77	167432	~6.87981E~03
540	990879	163.141	244.712	-,250608	-7-2845E-03
550	#986438	158.245	241.763	312269	-4-551896-03
560	• 979808	153.11	238.171	- 474739	028215A
5/0	•963943	146 475	231.919	-724595	· 0237808
580	•931197	138.367	222.925	-1.22171	0755796
570	841102	126.148	206.743	-1.92951	0471095
800	●64603B	110.02	183,367	-4,13581	- 254458
61.0	252343	86.7522	146.997	2.97839	1.55405
620	•010259	140.084	241.256	10.1187	302213
630	15587	178.542	312.449	2.35842	-1.04365
640	314551	164.666	292.74	-2.60302	-10713
650	-386443	152.782	275,856	-1.57512	0193305
660	.395173	142.299	260,882	-1-44584	6-60133E-03
670	-360194	132.501	246.599	-1.43623	-2.84863E-03
680	.291441	122,92	232.182	-1.43587	6.43253E-03

按照上述观点, 文献[3]导出的校正 d²P/d^{λ²} 的看法似乎只对放大器校正色散适用; 对 振荡器而言,必须在一定波段内完全校正腔内色散。

对于与刘玉璞、林礼煌、方洪烈等的有益讨论表示感谢。

参考文献

- J. G. Fujimoto et al.; «XIII IQEC, June 18~21, 1984 Anaheim, California, Digest of Technical Papers», 21-MDD1.
- [2] R. L. Fork et al.; IEEE J. Quant. Electron., 1983, QE-19, No. 4 (Apr), 500.
- [3] J. P. Gordon et al.; Opt. Lett., 1984, 9, No. 5 (May), 150, 153.
- [4] W. Dietel et al.; Opt. Lett., 1983, 8, No. 1 (Jan), 4.
- [5] H. A. Maclead; «Thin Film Optical Filters», (Adam Hilger, London, 1969).
- [6] W. Dietel et al.; Opt. Commun., 1984, 50, No. 3 (1 Jun), 179.

Ultrashort pulses and intracavity dispersion

WANG ZHIJIANG AND YANG BENQI

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 7 August 1984; revised 5 October 1984)

Abstract

It is necessary to compensate the dispersion completely within the demanded wavelength range in a mode-locked laser cavity for obtaining ultra-short pulses. Operation with no dispersion can be achieved by appropriated design of films coated on mirrors to match the medium inside the cavity. In this way, ultra-pulses can be obtained.